
ST
AN

DA
RD

SI
LV

ER
GO

LD
PL

AT
IN

U
M

☕

🥪

☕ 🎫

Documentation
for Developers

Documentation
for Developers

Developers
Do
Documentation

BRISBANE

ht
tp
s:
//
ge
ek
an
dp

ok
e.
ty
pe

pa
d.
co
m
/g
ee
ka
nd

po
ke
/2
00

9/
12

/w
e-
al
l-h

ad
-o
ur
-d
re
am

s.
ht
m
l

About Me

Currently

• Principal Consultant & Practice Director

• CTO

Previously

• Various Enterprise, Startup and
Freelance

Why do we document things?

• Communicate complex systems easier
• Reduce cognitive load
• Developer On-boarding
• Software and Solution Architecture
• Architectural Guidelines and Principles
• Decisions and rationale
• Disaster recovery

Why DON’T we document things?

• Documentation is boring
• Often requires special tooling, or licenses
• Diagramming tools are often hard to version control
• Perfect is the enemy of done

Traditional approach
• Wikis, Confluence
• Word Documents
• Specialised tools

• Visio
• Draw.io
• Paint
• Illustration Tools

My ethos about documentation?

A possible solution?

• Be pragmatic
• Adopt “Documentation as Code”
• Favour the separation of structure from presentation
• Minimal requirement for extra tooling

Pros and cons

• Version controllable / diffable

• Simple to use/learn

• Using a DSL vs just diagrams means there is
context

• Cross platform
• Minimal tooling

• Can generate images / pdf / ppt

• Minimal licensing

• Downside is the learning curve

• Code sprawl

• Harder to search & aggregate
• Less accessible to non-tech folk

Markdown Readmes

• A quick intro for onboarding
• Use a template for consistency
• Google for examples
• Customise for your organization
• readme-md-generator

https://github.com/kefranabg/readme-md-generator

https://github.com/kefranabg/readme-md-generator
https://github.com/kefranabg/readme-md-generator

Architectural Guidance

• Architecture Principles
• Assumptions
• Make it easier for developers to

make decisions
• Could this meeting have been a

Principle?

Well-defined principles

• Name: Succinct, easy to remember, and carries
the essence of the rule (few words)

• Statement: Unambiguous statement defining
the rule (1 to 3 sentences)

• Rationale: Why is this rule important,
particularly in terms of business benefits.

• Implications: Identifies explicitly how the rule
affects the business, teams, etc.

Tracking
Decisions
• Markdown Decision Records (MADR)

• Context/Problem
• Considered Options
• Decision
• Consequences

https://adr.github.io/madr/

Tracking
Decisions
• Markdown Decision Records (MADR)

• Context/Problem
• Considered Options
• Decision
• Consequences

https://adr.github.io/madr/

Tracking
Decisions
• Markdown Decision Records (MADR)

• Context/Problem
• Considered Options
• Decision
• Consequences

https://adr.github.io/madr/

Diagramming - PlantUML
• Text-based diagramming

• Support for multiple diagram types
• Sequence diagram
• Class diagram
• Activity diagram
• Entity Relationship diagram

• Extensible with Libraries
• Azure, Kubernetes, AWS, C4…

• Tooling
• Visual Studio Code + Extensions
• Supported by JetBrains and others also
• Supported in various Markdown wikis

https://plantuml.com/
https://crashedmind.github.io/PlantUMLHitchhikersGuide/
https://github.com/plantuml/plantuml-stdlib

https://plantuml.com/
https://crashedmind.github.io/PlantUMLHitchhikersGuide/
https://github.com/plantuml/plantuml-stdlib

PlantUML
Demo
Sequence Diagram

PlantUML
Demo
Entity Relationship Diagram

C4 Model • Created by Simon Brown (see YOW 2022)

• Helps avoid overly-complex diagrams

• Context (level 1): system scope, users and other systems

• Container (level 2): represents an application or a data store
• web application, mobile app, serverless function, embedded device

• Component (level 3): internals of a container
• Code (level 4): class-level decomposition

https://c4model.com/
https://adrianvlupu.github.io/C4-Builder/
https://github.com/plantuml-stdlib/C4-PlantUML
https://c4model.com/review/

https://c4model.com/
https://adrianvlupu.github.io/C4-Builder/
https://github.com/plantuml-stdlib/C4-PlantUML
https://c4model.com/review/

C4 Model
Demo
Bad Context Diagram

C4 Model
Demo
Good Context Diagram

C4 Model &
Markdown
Demo
Context & Container Diagrams

Bringing it all together

• Roll your own scripts

• Markdown front-matter for metadata

• Output to PDF in CI/CD pipelines
• Tools like C4 Builder

https://adrianvlupu.github.io/C4-Builder/
https://pandoc.org/

https://adrianvlupu.github.io/C4-Builder/
https://pandoc.org/

Structurizr

• Tooling to extend on PlantUML & C4 & ADRs

• More control over rendering

• Linking between different elements
• Model and element reuse

• Team sharing

(Also by Simon Brown)

https://structurizr.org/
https://structurizr.com/
https://structurizr.com/help/decision-log

https://structurizr.com/
https://structurizr.com/
https://structurizr.com/help/decision-log

How do you encourage developers to
document their code inline? So that
code doco can be rendered in the
build pipeline.

It’s not something I actively encourage, but it depends
on the type of software you’re writing. As with most
of the stuff I’ve presented here, be pragmatic.

Through the pull request process is a good way to
ensure that code is documented, if required. I would
suggest documenting code inline if the intent of the
code can’t be clearly understood by a mid-level
developer.

However, if you’re creating a library or API that is to be
consumed by 3rd parties, then inline documentation
might be more useful. In this case I’d look at using
convention tests or some other process in your CI
build to break the build if a developer adds new code
without the expected documentation.

Can you recommend a good starting
template for an Architectural
Guidance doc?

Software Architecture for Developers – Simon Brown

http://leanpub.com/software-architecture-for-
developers

Creating Software with Modern Diagramming –Ashley
Peacock

https://pragprog.com/titles/apdiag/creating-software-
with-modern-diagramming-techniques/

As much as I would hate to recommend TOGAF…

https://pubs.opengroup.org/architecture/togaf8-
doc/arch/chap29.html

https://pragprog.com/titles/apdiag/creating-software-with-modern-diagramming-techniques/

Any alternatives to PlantUML?
Have you looked at mermaid?

Yep, I’ve used mermaid. It’s a good option because it
seems to be natively supported by more wikis and
github etc.

The reason I didn’t talk about mermaid much is
because it’s a bit limited in functionality compared to
PlantUML. Having said that, if it’s supported by your
platforms then mermaid is a good option. It’s also
relatively straight forward to move from mermaid to
PlantUML later if you need the extended functionality.

From a documentation point of view, a couple of
people suggested Asciidoc during the Q&A session. I
haven’t looked into this heavily but I think it’s worth a
look as well, especially for creating large-scale user
documentation.

Another project I recently came across is kroki.io – it
seems to be an amalgamation of a bunch of other text
based documentation projects.

Any tools for exporting tables from
Excel to markdown?

There’s actually a Visual Studio Code extension for
that. If you just want to copy/paste tables this is a
good option:

https://marketplace.visualstudio.com/items?itemNam
e=csholmq.excel-to-markdown-table

I’m not sure about what you’d do if you wanted to
extract a table as part of a CI process though.

What would you recommend for
BPMN?

Good question. I haven’t done a lot with BPMN.

When I did have to view some BPMN documents
recently I used Visual Studio Code plugin to visualise
the diagrams, but that’s about the extent of my
experience unfortunately.

I know PlantUML doesn’t currently support it because
there’s an open issue discussing this.

Can you do cloud infrastructure diagram?

Also, can you add images (logos)?

Absolutely. There are a ton of PlantUML libraries for this:

https://github.com/plantuml-stdlib/Azure-PlantUML
https://github.com/awslabs/aws-icons-for-plantuml
https://github.com/dcasati/kubernetes-PlantUML

https://crashedmind.github.io/PlantUMLHitchhikersGuide/aws/aws.
html

